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Abstract.  Self-organizing maps (SOM) are  a powerful  tool  for detecting 
patterns  in  large,  multi-dimensional  data  sets.  Additional  visualization 
techniques have been developed to support the user to gain insight into its 
structure.  For  complex  data  sets,  even  these  techniques  are  not  easily 
interpretable.  Most  of  them consist  of  a grid  where each cell  contains  a 
single value. Such a structure can be seen as an artificial landscape. This 
paper aims to explain the function of the SOM algorithm and to present a 
number  of  frequently  used  visualization  techniques.  We  show  a  way to 
import traditionally created SOM into a GIS, so that operations created for 
spatial analysis can be applied to this originally non-spatial data. We present 
GIS  operations  that  help  the  user  to  understand  the  structure  of  a 
visualization technique, its underlying SOM, and eventually the input data 
set.

1 INTRODUCTION

Due to the improvement in data collection, data sets tend to become larger, 
more  complex  and  thereby  more  difficult  to  analyze  with  traditional 
statistical approaches. This holds especially true for sets with an unknown 
structure. Moreover, patterns that are not expected to appear in a set might 
be overlooked.

Data mining algorithms have proven useful for the evaluation of these 
high-dimensional data sets (Fayyad et al., 1996; Hand, 1998). One of the 
most popular data mining techniques is the Self-Organizing Map (SOM) 
algorithm (Kohonen, 2001). It can be used for data projection and thereby 
allows for visual inspection. Numerous applications have been developed 
for emphasizing different aspects of the SOM (Vesanto, 1999). With these 
applications it is possible to detect similarities or dissimilarities within the 
data set (Kaski et al., 2000).

However, the performance of the SOM depends on the complexity and 



diversity of the data set.  With our work we evaluate the possibilities of 
using operations offered by a Geographical Information System (GIS) in 
order to carry out a satisfying examination of the data under consideration. 
Before  we  can  do  this,  we  have  to  import  the  data  generated  by  the 
traditional SOM producing programs into a GIS. After that we will present 
some operations provided by GIS and show how they can be used to make 
statements about a SOM and its underlying data set.

2 SELF-ORGANIZING MAPS

A self-organizing map is an artificial neural network. Its units are arranged 
in a fixed order. In most cases, this would be a 2-dimensional rectangular 
or hexagonal grid of the form (n*m). Each unit is associated with a weight 
vector  (or:  codebook vector)  wi which is  of  the same dimension as  the 
input data.

Before a map can be trained, the codebook vectors wi must be initialized 
with values similar to those of the input data. During the training phase the 
input  vectors  are  presented  to  the  map  consecutively.  The  unit  of  the 
codebook vector wi that shows the smallest distance to the input vector x is 
declared the Best Matching Unit (BMU). This process is also referred to as 
Vector Quantization (Vesanto and Alhoniemi, 2000). A codebook vector wi 

of the map is updated via

where t is a point in time,  ht
ci is a neighborhood function,  αt is a learning 

rate  and  d(x,  wt
i) is  the  distance  between  an  input  vector  x and  the 

codebook  vector  wi.  Both  αt and  ht
ci lie  within  the  interval  [0,1] and 

decrease  by  time.  The  neighborhood  function  ht
ci is  defined  by  the 

topological  or  geometrical  relationship  between   wt
i and  the codebook 

vector wt
c of the BMU. After n  training cycles the values of the codebook 

vectors  wn will represent the distribution of the input vectors (Kohonen, 
2001).

3 VISUALIZATION OF THE CODEBOOK VECTORS

Different  techniques are used to visualize the codebook vectors and the 
relationships  amongst  them.  We  will  introduce  some  of  them  in  this 
chapter. They will create values which are visualized on the grid through a 
shade from a color scale. Usually a grey scale is used where bright shades 
indicate low and dark shades indicate high values.

In order to explain the function of these visualization techniques we will 



use two working examples: One data set where the dimension of the input 
vectors is 2 and one where it is 4.

For the data set with only two variables it is possible to plot not only the 
input vectors but also the codebook vectors of the SOM onto a plane with 
the  attributes  as  coordinate  axes.  This  2-dimensional  representation 
suffices to show the relations ot the codebook vectors to their neighboring 
codebook vectors and the input vectors. We will show the corresponding 
visualization techniques in  addition so that  the meaning of  their  values 
becomes clear. For the four dimensional data set we will have to fully rely 
on the visualization techniques.

The data set with only two variables is the data from the map John Snow 
created in September 1854. He plotted the location of cholera cases on a 
London  street  map  and  thus  could  eventually  determine  a  water  pump 
around which the disease cases cumulated as a source of contamination 
(Painho et al.,  2005; Tufte,  1982). The variables here are the x- and y-
dimension. For this set, we created and trained a hexagonal SOM with an 
extension of (7*7) units with SOM_PAK (Kohonen et al., 1996).

This  data  set  is  special,  since it  is  purely spatial.  It  has  no  thematic 
attributes. Although it has been proposed to include also the geometrical 
attributes into the SOM-algorithm (Baçao et al., 2004), when dealing with 
spatial data the common approach is to use only the thematic attributes for 
the building of the SOM. This is often done when the output of the SOM is 
visualized together with a geographical map, so that the spatial properties 
are shown otherwise (Koua and Kraak, 2004). 

The 4-dimensional data set is the iris flower data set where the sepal 
length, sepal width, petal length and petal width are the input dimensions. 
The data set consists of 150 entries: 50 per flowers of the species Setosa, 
Virginica, and Versicolor,  respectively (Anderson,  1935).  The SOM is a 
hexagonal SOM with  (4*6) units. It was computed with SOM_PAK, too. 
This dataset has the property that for each entry it is known which species 
it describes. Therefore each codebook vector that could be said to represent 
flowers of a certain species could be labeled with the name of that species. 
Codebook vectors that could not be assigned to a species were labeled as 
NL.

In contrast to the John Snow data set, the iris flower data set has no 
spatial  attributes  at  all.  In  previous work,  the usage of  geovisualization 
methods for examining SOM has mainly been limited to the investigation 
of the thematic attributes of spatial data (Guo et al., 2005). It is important 
to note that any such restriction is unnecessary. A data set does not need to 
be spatial in order to have its resulting SOM be analyzed by means of a 
GIS.



Figure 1:  The data  of  the John Snow map.  On the left,  the  data  set  is 
directly  plotted.  The  middle  image  shows  the  codebook  vectors  of  the 
trained  SOM. Edges  indicate  connections  between  neighboring  vectors. 
The image on the right shows them together in the same image. One can 
well see that the codebook vectors tend to be close to each other when the 
input  vector  distribution is  tense.  Vice versa,  the distances between the 
codebook vectors are large in areas with a sparse input vector distribution.

3.1 COMPONENT PLANES

A component plane shows the relative values of one of the components of 
the  codebook  vectors  (Kohonen,  2001).  Obviously,  the  number  of 
component planes per SOM is equal to the size of the input dimension. We 
receive two component planes for the John Snow map and four for the iris 
flower data set.

Figure 2: The component planes of the SOM of the John Snow map. Note 
that  in  this  special  case the values stand for  the x-  and y- coordinates. 
Therefore values in the left plane tend to increase with the row number, 
whilst  the  values  in  the  right  plane  tend  to  increase  with  the  column 
number.



Figure 3: The component planes of the SOM of the iris flower data set. 
From top left to bottom right: The component planes showing sepal length, 
sepal width, petal length and petal width. The similarity of the planes 3 and 
4 hint to a high level of correlation between petal length and petal width. 
These planes also imply that the petal length and width of flowers of the 
species Setosa are significantly different from those of flowers of the other 
species.

3.2 U-MATRICES

The  u-matrix  is  used  to  visualize  the  distances  between  the  codebook 
vectors of a two-dimensional map. For a grid with a (n*m) - extension, the 
u-matrix usually has a (n-1*m-1) - extension. The following formula shows 
as a distance measure for a codebook vector wi the average distance to its 
immediate neighbors:

where d(wi, wj) denotes the distance between two vectors i and j and N(i) is 
the set of neighboring units of vector i.

The (n-1*m-1) - sized u-matrix will also show the immediate distances 
between neighboring units,  thus providing much more significance. The 
grid value is called the u-height uhi (Sommer et al., 2002). The u-matrix is 
especially well apt to detect clusters and the boundaries between them. In 



the u-matrix, small values will tend to cover an area with two-dimensional 
extension while large values rather align in line-like structures.

Figure 4: On the left:  The u-matrix for the John Snow data set.  On the 
right:  The u-matrix for the iris flower data set. Units with odd row and 
column numbers contain values that were calculated by the formula given 
above. The values for the cells in between contain the distance between the 
codebook  vectors  of  two  neighboring  cells.  Dark  values  indicate  large 
distances. Whilst the u-matrix for the John Snow map does not show any 
interesting patterns except for some units at the borders, the u-matrix for 
the iris data set shows well that the Setosa-labeled codebook vectors have 
different values than the others.

3.3 P-MATRICES

A p-matrix is a (n*m) – sized grid. It calculates the data density around a 
codebook vector. The value contained by one grid cell of the p-matrix is its 
p-height ph(i) and is calculated as

where d(x, wi) is the distance between the codebook vector  wi and x, E is 
the  input  data  set,  x  is  an  input  vector,  and  r is  a  radius  around  wi. 
Obviously, the choice of r is crucial. A proposal is given in Ultsch (2005).

The  p-height  ph(i)  is  an  integer  value  which  tells  how  many  input 
vectors  have  smaller  distance  to  wi   than  r.  The  p-matrix  is  not  to  be 
confused with a hit map which would show how often a unit was chosen as 
a BMU. The differences are that in the p-matrix an input vector can be 
assigned  to  more  than  one  unit  and  an  input  vector  is  not  necessarily 
assigned to a codebook vector.



Figure 5: The first image shows the p-matrix of the John Snow map SOM. 
In contrast to the u-matrix, here dark values indicate clusters. The second 
image shows a  visualization  of  the  function  of  the  p-matrix.  The  more 
input  vectors  lie  within  a  given  radius  around  a  codebook  vector,  the 
higher the p-height ph(i) will be. The third image shows the hit map of the 
John Snow map SOM. The fourth  image shows the  visualization of  its 
function. Instead of overlapping circles which only cover part of the space, 
Voronoi polygons show the function of the hit map. Voronoi polygons do 
not  overlap  and  cover  all  of  the  space  (Voronoi,  1907).  The  p-matrix 
implies that both codebook vectors and input vectors cluster in the middle 
of input space. This is verified by the second image.

Figure 6: P-matrix (left) and hit map (right) of the SOM for the iris flower 
data set. In the p-matrix, the three very bright cells are another hint to the 
differentiation of the Setosa-labeled codebook vectors towards the other 
ones. The hit map reveals that few or no input vectors have been assigned 
to the codebook vectors that have stayed unlabeled.
Apart  from these visualization techniques exist  numerous more, notably 
the u*-Matrix (Ultsch, 2007) and Sammon's Mapping (Sammon, 1969) .

4 CONVERSION OF THE SOM

The first  step of our work was to find a way to convert the SOM data 
created by SOM_PAK or the SOM toolbox (Vesanto et al., 2000) in such a 
way that its content can be read by a GIS. ArcGIS provides a functionality 
to create features from a text file (Liebig and Mummenthey, 2005). In this 



text file the type and coordinates of each feature have to be specified. We 
have implemented a tool in Java that writes such a text file.

The  services  of  the  tool  can  be  split  into  three  components:  import, 
operational and export. Since SOM_PAK and the SOM Toolbox use the 
same file structure, the tool can read SOM and input data from either. In 
the first line of a SOM file, the dimension n of the vectors, the topology 
type (hexagonal or rectangular), the map dimensions in x- and y-direction 
and the neighborhood type are specified. Each of the following x*y  lines 
represents one codebook vector and contains n values, one per dimension. 
Optionally,  the  codebook  vector  lines  can  also  specify  the  label  of  the 
vector. The structure of a file containing the input vectors is similar, except 
that the first line contains only the dimension n of the vectors. 

In the tool, the SOM, its input data, and its visualization types are placed 
together in a group. Input data can only be imported into a group if the 
codebook  vectors  of  the  SOM are  of  the  same dimension  as  the  input 
vectors or if the group does not already contain a SOM. The same is valid 
for the import of a SOM. 

If a group contains a SOM, the tool can evaluate the component planes 
and different types of u-matrices. If the group also contains the input data, 
the tool can evaluate the p-matrix, the hit map and the u*-matrix of the 
SOM.  The  tool  can  display  all  these  visualization  types  by  drawing 
hexagons or rectangles and filling them with a grey shade according to the 
respective  value.  The  highest  value  will  be  coded  as  black,  the  lowest 
value as white. Note that all screen shots of this paper stem from this tool. 

The third component of the tool is the export functionality. The tool is 
able  to  export  every type of  SOM that  can be represented as  a grid  of 
rectangles or hexagons on which a shade of grey is applied. This accounts 
for every visualization type that can be calculated by the conversion tool. 
For reasons of simplicity the visualization types are exported in such a way 
that  they  can  be  read  as  points  by ArcGIS.  The  text  file  to  be  created 
consists of a line specifying the desired feature type - in our case points - 
and x*y lines per unit. Each of these lines consists of an ID and coordinates 
for  the  x-,  y- and  z-value.  We  decided  to  choose  the  center  of  each 
rectangle or hexagon as the point representing an unit. The x- and y-values 
were assigned to each of these points so that the relative distances between 
the points  would be preserved.  The actual  size of  the distance is of no 
importance. After that, the value of the visualization type to be encoded 
was brought into relation with the extension of the x- and y-dimensions, so 
that the largest  z-value would be of the same size as the largest  x- or  y-
value.  ArcGIS provides  a  command called  "Create  Features  From Text 
File" which reads the data and creates a set of 3D point features. 

Another  way  to  import  the  data  into  ArcGIS  was  to  use  its  "Quick 



Import"-Function. This function allowed us to also import the labels. As 
import format, we chose the CITS Data Transfer Format. This format is 
very similar to the plain text file. A difference is  that it has no header line. 
For each point, three lines must be written: One line for the attributes, i.e. 
the label,  one line indicating the number of points of which the feature 
consists, i.e. 1, and one line for the coordinates that are given as described 
above. From these files, ArcGIS creates a geodatabase that contains a set 
of 3D point features.

These features form the base of our work in ArcGIS.

5 VISUALIZING SOM IN ARCGIS

In  this  chapter  we  want  to  show  some  of  the  applications  we  have 
encountered.  We  will  differentiate  between  two  kinds  of  visualization 
types. The first sort consists of those types that tend to show a landscape-
like structure with hills and valleys. These are u-matrices, p-matrices, hit 
maps and u*-matrices. The other kind of visualization types consists of 
those where large and small values tend to lie in opposing corners or edges 
of the grid. This holds true for the component planes.

5.1 ANALYSIS OF LANDSCAPE-LIKE VISUALIZATION TYPES

One way to deal with the landscape-like visualization types is to transform 
them into a Triangulated Irregular Network (TIN). A TIN is a vector data 
structure that partitions space into contiguous, non-overlapping triangles. 
The  vertices  of  the  triangles  are  points  in  3D space.  The  triangles  are 
formed by edges connecting the points.  We could directly create a TIN 
from  the  point  feature  data.  In  order  to  perform  the  operations,  it  is 
necessary to transform the TIN into a raster where each cell contains an 
elevation  value.  This  elevation  value  is  interpolated  from  the  nodes 
forming the triangle (Freiwald et al., 2005). For reasons of visibility in a 3-
D environment, the hillshade is shown, too. The hillshade operation sets a 
hypothetical  light  source  and  calculates  a  brightness  value  for  each 
triangle.

Yet another way to get an overview of the structure of the u-matrix is the 
contour operation.  It  creates  a set  of  polylines.  Each of  these polylines 
consists of neighboring points with the same elevation value. The amount 
of polylines and elevation values to be displayed can be chosen by the user. 
An  advantage  of  the  polylines  is  that  they  only  show when  change  in 
elevation happens, but not the absolute value. Therefore they eliminate the 
distracting influence of the color values. 



Figure 7:  The TIN derived from the u-matrix.  The TIN allows users  to 
zoom into,  rotate,  fly,  and  navigate  through  the  data.  Thus  the  user  is 
enabled to explore those parts of the landscape which are most interesting 
to him. Weaknesses of the TIN are its tendency to occlude large parts of 
the  landscape  and  the  high  likelihood  that  the  user  gets  lost  in  the 
landscape whilst navigating. 

Figure 8: A raster set derived from the point data of the u-matrix. Elevation 
values are calculated via spline interpolation over the point features. Each 
elevation value is assigned to a color value from a continuous scale. In this 
image,  the hill  between the Virginica vectors  on the left  becomes more 
evident  than  in  the  traditional  u-matrix  representation  with  the  grid.  It 
seems that the Virginica flowers are quite diverse.

5.2 ANALYSIS OF COMPONENT PLANES 

Another possibility to analyze a SOM is to inspect the component planes. 



One of them alone has only little explanatory power over the SOM, but in 
their entirety they describe it very well. A GIS provides methods to retrieve 
information from a number of component planes by visualizing more than 
one of them into the same space or by performing statistical analysis that 
considers all component planes.

Figure  9:  Contour  lines  of  the  u-matrix.  It  can  be  seen  that  codebook 
vectors  from the  types  Setosa  and  Versicolor  lie  in  areas  with  smaller 
distractions. This hints to a homogeneity of flowers of these species.

One way to visualize multiple component planes in the same image is the 
composite bands operation. It creates a single raster set from multiple sets 
with the same spatial extent. Thus it becomes possible to visualize three 
component  planes  at  the  same time  by  using  the  RGB color  spectrum 
(Cowlishaw, 1985). The values of one plane are used as either red, green or 
blue color components. The resulting colors are displayed. This operation 
is  especially  apt  to  show  differences  between  clusters,  since  different 
values will result in different colors. The only drawback is that just three 
component planes can be displayed at the same time. For the iris data set 
with four dimensional data we needed four composite band combinations 
in order to map every combination of planes.

The  maximum  likelihood  classification  is  a  statistical  operation  to 
perform classifications for a set of raster sets that cover the same spatial 
extent. It needs a signature file. One way to create such a file is the ISO 
cluster operation. For this operation one can specify the number of desired 
clusters and the raster sets on which to perform the analysis. The algorithm 
arbitrarily chooses centers in multi-dimensional space and assigns the cell 
values with the closest euclidean distance to exactly one of these centers. 
After all cells have been assigned to one center, the mean of all cell values 



for one cluster set is set as the new center. The user can specify the number 
of times this cycle will be repeated. After the cycle has been finished, a 
signature file is created which contains the mean values per raster band and 
the  covariance  matrix  for  each  class.  The  maximum  likelihood 
classification uses this signature file and the raster sets to create a new 
raster set where each cell has a value that assigns it to exactly one cluster.

Figure  10:  The  composite  band  combinations  of  the  four  different 
component  planes.  Top left:  Combination  of  the  planes  1,2  and 3.  Top 
right: Combination of the planes 1,2 and 4. Bottom left: Combination of 
the planes 1,3 and 4. Bottom right: Combination of the planes 2,3 and 4. 
Due to the similarity of the component planes 3 and 4 the two images on 
the top look similar. Since the values of plane 3 are highly similar to the 
ones of plane 4, they can be seen as representatives of the values of that 
plane and vice versa. Therefore it can be argued that the top images show 
best the value distribution of the SOM.

6 CONCLUSION

With this work we have shown ways to gain insight into the structure and 
extension of a SOM by applying operations provided by a GIS on some of 
its visualization types. We have explained the function and architecture of 
a  SOM  and  shown  different  ways  to  visualize  its  structure.  We  have 
described how we import these visualization types into a GIS and we have 
proposed several operations to display and thereby emphasize certain of its 
properties or analyze SOM by statistic means. Since SOM are presented on 
a two-dimensional display on which a further third variable is displayed, 
they are well apt to be treated as spatial data. We have shown that it  is 



possible to treat the visualization types of a SOM as artificial landscapes 
and that therefore spatial  analysis can be applied to this originally non-
spatial  data.  The  GIS-driven  evaluation  of  SOM  is  therefore  an 
enhancement to traditional evaluation approaches.

Figure 11: The maximum likelihood classification for the iris flower data 
set with three classes. Each species is assigned to its own class. Codebook 
vectors  representing  Setosa  flowers  have  to  share  their  class  with  the 
unlabeled vectors, however.

It must be stressed that the work of this paper is by no means completed. 
The operations presented here form only a small part of the GIS repertoire. 
We  will  continue  looking  for  spatial  operations  that  can  deliver 
information about  the SOM. We also will  work on making the relation 
between the output of the spatial operations and its meaning for the SOM 
input  data  more  evident.  One  way  to  do  this  is  to  perform  spatial 
operations on the GIS results and provide links back to the input data. To 
emphasize the usefulness of a GIS for gaining insight into the structure of 
a SOM, it must be made more evident what the results mean for a distinct 
input vector. We are convinced that when we have accomplished this, GIS 
will stand out as one of the best ways to analyze SOM.
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