
Visualizing self-organizing maps with GIS
Tonio Fincke1, Victor Lobo2, Fernando Bação3

1Institute for Geoinformatics, University Münster, Germany
fincke@uni-muenster.de

2Portuguese Naval Academy, Almada, Portugal
vlobo@isegi.unl.pt

3ISEGI, Universidade Nova de Lisboa, Portugal
bacao@isegi.unl.pt

Abstract. Self-organizing maps (SOM) are a powerful tool for detecting
patterns in large, multi-dimensional data sets. Additional visualization
techniques have been developed to support the user to gain insight into its
structure. For complex data sets, even these techniques are not easily
interpretable. Most of them consist of a grid where each cell contains a
single value. Such a structure can be seen as an artificial landscape. This
paper aims to explain the function of the SOM algorithm and to present a
number of frequently used visualization techniques. We show a way to
import traditionally created SOM into a GIS, so that operations created for
spatial analysis can be applied to this originally non-spatial data. We present
GIS operations that help the user to understand the structure of a
visualization technique, its underlying SOM, and eventually the input data
set.

1 INTRODUCTION

Due to the improvement in data collection, data sets tend to become larger,
more complex and thereby more difficult to analyze with traditional
statistical approaches. This holds especially true for sets with an unknown
structure. Moreover, patterns that are not expected to appear in a set might
be overlooked.

Data mining algorithms have proven useful for the evaluation of these
high-dimensional data sets (Fayyad et al., 1996; Hand, 1998). One of the
most popular data mining techniques is the Self-Organizing Map (SOM)
algorithm (Kohonen, 2001). It can be used for data projection and thereby
allows for visual inspection. Numerous applications have been developed
for emphasizing different aspects of the SOM (Vesanto, 1999). With these
applications it is possible to detect similarities or dissimilarities within the
data set (Kaski et al., 2000).

However, the performance of the SOM depends on the complexity and

diversity of the data set. With our work we evaluate the possibilities of
using operations offered by a Geographical Information System (GIS) in
order to carry out a satisfying examination of the data under consideration.
Before we can do this, we have to import the data generated by the
traditional SOM producing programs into a GIS. After that we will present
some operations provided by GIS and show how they can be used to make
statements about a SOM and its underlying data set.

2 SELF-ORGANIZING MAPS

A self-organizing map is an artificial neural network. Its units are arranged
in a fixed order. In most cases, this would be a 2-dimensional rectangular
or hexagonal grid of the form (n*m). Each unit is associated with a weight
vector (or: codebook vector) wi which is of the same dimension as the
input data.

Before a map can be trained, the codebook vectors wi must be initialized
with values similar to those of the input data. During the training phase the
input vectors are presented to the map consecutively. The unit of the
codebook vector wi that shows the smallest distance to the input vector x is
declared the Best Matching Unit (BMU). This process is also referred to as
Vector Quantization (Vesanto and Alhoniemi, 2000). A codebook vector wi

of the map is updated via

where t is a point in time, ht
ci is a neighborhood function, αt is a learning

rate and d(x, wt
i) is the distance between an input vector x and the

codebook vector wi. Both αt and ht
ci lie within the interval [0,1] and

decrease by time. The neighborhood function ht
ci is defined by the

topological or geometrical relationship between wt
i and the codebook

vector wt
c of the BMU. After n training cycles the values of the codebook

vectors wn will represent the distribution of the input vectors (Kohonen,
2001).

3 VISUALIZATION OF THE CODEBOOK VECTORS

Different techniques are used to visualize the codebook vectors and the
relationships amongst them. We will introduce some of them in this
chapter. They will create values which are visualized on the grid through a
shade from a color scale. Usually a grey scale is used where bright shades
indicate low and dark shades indicate high values.

In order to explain the function of these visualization techniques we will

use two working examples: One data set where the dimension of the input
vectors is 2 and one where it is 4.

For the data set with only two variables it is possible to plot not only the
input vectors but also the codebook vectors of the SOM onto a plane with
the attributes as coordinate axes. This 2-dimensional representation
suffices to show the relations ot the codebook vectors to their neighboring
codebook vectors and the input vectors. We will show the corresponding
visualization techniques in addition so that the meaning of their values
becomes clear. For the four dimensional data set we will have to fully rely
on the visualization techniques.

The data set with only two variables is the data from the map John Snow
created in September 1854. He plotted the location of cholera cases on a
London street map and thus could eventually determine a water pump
around which the disease cases cumulated as a source of contamination
(Painho et al., 2005; Tufte, 1982). The variables here are the x- and y-
dimension. For this set, we created and trained a hexagonal SOM with an
extension of (7*7) units with SOM_PAK (Kohonen et al., 1996).

This data set is special, since it is purely spatial. It has no thematic
attributes. Although it has been proposed to include also the geometrical
attributes into the SOM-algorithm (Baçao et al., 2004), when dealing with
spatial data the common approach is to use only the thematic attributes for
the building of the SOM. This is often done when the output of the SOM is
visualized together with a geographical map, so that the spatial properties
are shown otherwise (Koua and Kraak, 2004).

The 4-dimensional data set is the iris flower data set where the sepal
length, sepal width, petal length and petal width are the input dimensions.
The data set consists of 150 entries: 50 per flowers of the species Setosa,
Virginica, and Versicolor, respectively (Anderson, 1935). The SOM is a
hexagonal SOM with (4*6) units. It was computed with SOM_PAK, too.
This dataset has the property that for each entry it is known which species
it describes. Therefore each codebook vector that could be said to represent
flowers of a certain species could be labeled with the name of that species.
Codebook vectors that could not be assigned to a species were labeled as
NL.

In contrast to the John Snow data set, the iris flower data set has no
spatial attributes at all. In previous work, the usage of geovisualization
methods for examining SOM has mainly been limited to the investigation
of the thematic attributes of spatial data (Guo et al., 2005). It is important
to note that any such restriction is unnecessary. A data set does not need to
be spatial in order to have its resulting SOM be analyzed by means of a
GIS.

Figure 1: The data of the John Snow map. On the left, the data set is
directly plotted. The middle image shows the codebook vectors of the
trained SOM. Edges indicate connections between neighboring vectors.
The image on the right shows them together in the same image. One can
well see that the codebook vectors tend to be close to each other when the
input vector distribution is tense. Vice versa, the distances between the
codebook vectors are large in areas with a sparse input vector distribution.

3.1 COMPONENT PLANES

A component plane shows the relative values of one of the components of
the codebook vectors (Kohonen, 2001). Obviously, the number of
component planes per SOM is equal to the size of the input dimension. We
receive two component planes for the John Snow map and four for the iris
flower data set.

Figure 2: The component planes of the SOM of the John Snow map. Note
that in this special case the values stand for the x- and y- coordinates.
Therefore values in the left plane tend to increase with the row number,
whilst the values in the right plane tend to increase with the column
number.

Figure 3: The component planes of the SOM of the iris flower data set.
From top left to bottom right: The component planes showing sepal length,
sepal width, petal length and petal width. The similarity of the planes 3 and
4 hint to a high level of correlation between petal length and petal width.
These planes also imply that the petal length and width of flowers of the
species Setosa are significantly different from those of flowers of the other
species.

3.2 U-MATRICES

The u-matrix is used to visualize the distances between the codebook
vectors of a two-dimensional map. For a grid with a (n*m) - extension, the
u-matrix usually has a (n-1*m-1) - extension. The following formula shows
as a distance measure for a codebook vector wi the average distance to its
immediate neighbors:

where d(wi, wj) denotes the distance between two vectors i and j and N(i) is
the set of neighboring units of vector i.

The (n-1*m-1) - sized u-matrix will also show the immediate distances
between neighboring units, thus providing much more significance. The
grid value is called the u-height uhi (Sommer et al., 2002). The u-matrix is
especially well apt to detect clusters and the boundaries between them. In

the u-matrix, small values will tend to cover an area with two-dimensional
extension while large values rather align in line-like structures.

Figure 4: On the left: The u-matrix for the John Snow data set. On the
right: The u-matrix for the iris flower data set. Units with odd row and
column numbers contain values that were calculated by the formula given
above. The values for the cells in between contain the distance between the
codebook vectors of two neighboring cells. Dark values indicate large
distances. Whilst the u-matrix for the John Snow map does not show any
interesting patterns except for some units at the borders, the u-matrix for
the iris data set shows well that the Setosa-labeled codebook vectors have
different values than the others.

3.3 P-MATRICES

A p-matrix is a (n*m) – sized grid. It calculates the data density around a
codebook vector. The value contained by one grid cell of the p-matrix is its
p-height ph(i) and is calculated as

where d(x, wi) is the distance between the codebook vector wi and x, E is
the input data set, x is an input vector, and r is a radius around wi.
Obviously, the choice of r is crucial. A proposal is given in Ultsch (2005).

The p-height ph(i) is an integer value which tells how many input
vectors have smaller distance to wi than r. The p-matrix is not to be
confused with a hit map which would show how often a unit was chosen as
a BMU. The differences are that in the p-matrix an input vector can be
assigned to more than one unit and an input vector is not necessarily
assigned to a codebook vector.

Figure 5: The first image shows the p-matrix of the John Snow map SOM.
In contrast to the u-matrix, here dark values indicate clusters. The second
image shows a visualization of the function of the p-matrix. The more
input vectors lie within a given radius around a codebook vector, the
higher the p-height ph(i) will be. The third image shows the hit map of the
John Snow map SOM. The fourth image shows the visualization of its
function. Instead of overlapping circles which only cover part of the space,
Voronoi polygons show the function of the hit map. Voronoi polygons do
not overlap and cover all of the space (Voronoi, 1907). The p-matrix
implies that both codebook vectors and input vectors cluster in the middle
of input space. This is verified by the second image.

Figure 6: P-matrix (left) and hit map (right) of the SOM for the iris flower
data set. In the p-matrix, the three very bright cells are another hint to the
differentiation of the Setosa-labeled codebook vectors towards the other
ones. The hit map reveals that few or no input vectors have been assigned
to the codebook vectors that have stayed unlabeled.
Apart from these visualization techniques exist numerous more, notably
the u*-Matrix (Ultsch, 2007) and Sammon's Mapping (Sammon, 1969) .

4 CONVERSION OF THE SOM

The first step of our work was to find a way to convert the SOM data
created by SOM_PAK or the SOM toolbox (Vesanto et al., 2000) in such a
way that its content can be read by a GIS. ArcGIS provides a functionality
to create features from a text file (Liebig and Mummenthey, 2005). In this

text file the type and coordinates of each feature have to be specified. We
have implemented a tool in Java that writes such a text file.

The services of the tool can be split into three components: import,
operational and export. Since SOM_PAK and the SOM Toolbox use the
same file structure, the tool can read SOM and input data from either. In
the first line of a SOM file, the dimension n of the vectors, the topology
type (hexagonal or rectangular), the map dimensions in x- and y-direction
and the neighborhood type are specified. Each of the following x*y lines
represents one codebook vector and contains n values, one per dimension.
Optionally, the codebook vector lines can also specify the label of the
vector. The structure of a file containing the input vectors is similar, except
that the first line contains only the dimension n of the vectors.

In the tool, the SOM, its input data, and its visualization types are placed
together in a group. Input data can only be imported into a group if the
codebook vectors of the SOM are of the same dimension as the input
vectors or if the group does not already contain a SOM. The same is valid
for the import of a SOM.

If a group contains a SOM, the tool can evaluate the component planes
and different types of u-matrices. If the group also contains the input data,
the tool can evaluate the p-matrix, the hit map and the u*-matrix of the
SOM. The tool can display all these visualization types by drawing
hexagons or rectangles and filling them with a grey shade according to the
respective value. The highest value will be coded as black, the lowest
value as white. Note that all screen shots of this paper stem from this tool.

The third component of the tool is the export functionality. The tool is
able to export every type of SOM that can be represented as a grid of
rectangles or hexagons on which a shade of grey is applied. This accounts
for every visualization type that can be calculated by the conversion tool.
For reasons of simplicity the visualization types are exported in such a way
that they can be read as points by ArcGIS. The text file to be created
consists of a line specifying the desired feature type - in our case points -
and x*y lines per unit. Each of these lines consists of an ID and coordinates
for the x-, y- and z-value. We decided to choose the center of each
rectangle or hexagon as the point representing an unit. The x- and y-values
were assigned to each of these points so that the relative distances between
the points would be preserved. The actual size of the distance is of no
importance. After that, the value of the visualization type to be encoded
was brought into relation with the extension of the x- and y-dimensions, so
that the largest z-value would be of the same size as the largest x- or y-
value. ArcGIS provides a command called "Create Features From Text
File" which reads the data and creates a set of 3D point features.

Another way to import the data into ArcGIS was to use its "Quick

Import"-Function. This function allowed us to also import the labels. As
import format, we chose the CITS Data Transfer Format. This format is
very similar to the plain text file. A difference is that it has no header line.
For each point, three lines must be written: One line for the attributes, i.e.
the label, one line indicating the number of points of which the feature
consists, i.e. 1, and one line for the coordinates that are given as described
above. From these files, ArcGIS creates a geodatabase that contains a set
of 3D point features.

These features form the base of our work in ArcGIS.

5 VISUALIZING SOM IN ARCGIS

In this chapter we want to show some of the applications we have
encountered. We will differentiate between two kinds of visualization
types. The first sort consists of those types that tend to show a landscape-
like structure with hills and valleys. These are u-matrices, p-matrices, hit
maps and u*-matrices. The other kind of visualization types consists of
those where large and small values tend to lie in opposing corners or edges
of the grid. This holds true for the component planes.

5.1 ANALYSIS OF LANDSCAPE-LIKE VISUALIZATION TYPES

One way to deal with the landscape-like visualization types is to transform
them into a Triangulated Irregular Network (TIN). A TIN is a vector data
structure that partitions space into contiguous, non-overlapping triangles.
The vertices of the triangles are points in 3D space. The triangles are
formed by edges connecting the points. We could directly create a TIN
from the point feature data. In order to perform the operations, it is
necessary to transform the TIN into a raster where each cell contains an
elevation value. This elevation value is interpolated from the nodes
forming the triangle (Freiwald et al., 2005). For reasons of visibility in a 3-
D environment, the hillshade is shown, too. The hillshade operation sets a
hypothetical light source and calculates a brightness value for each
triangle.

Yet another way to get an overview of the structure of the u-matrix is the
contour operation. It creates a set of polylines. Each of these polylines
consists of neighboring points with the same elevation value. The amount
of polylines and elevation values to be displayed can be chosen by the user.
An advantage of the polylines is that they only show when change in
elevation happens, but not the absolute value. Therefore they eliminate the
distracting influence of the color values.

Figure 7: The TIN derived from the u-matrix. The TIN allows users to
zoom into, rotate, fly, and navigate through the data. Thus the user is
enabled to explore those parts of the landscape which are most interesting
to him. Weaknesses of the TIN are its tendency to occlude large parts of
the landscape and the high likelihood that the user gets lost in the
landscape whilst navigating.

Figure 8: A raster set derived from the point data of the u-matrix. Elevation
values are calculated via spline interpolation over the point features. Each
elevation value is assigned to a color value from a continuous scale. In this
image, the hill between the Virginica vectors on the left becomes more
evident than in the traditional u-matrix representation with the grid. It
seems that the Virginica flowers are quite diverse.

5.2 ANALYSIS OF COMPONENT PLANES

Another possibility to analyze a SOM is to inspect the component planes.

One of them alone has only little explanatory power over the SOM, but in
their entirety they describe it very well. A GIS provides methods to retrieve
information from a number of component planes by visualizing more than
one of them into the same space or by performing statistical analysis that
considers all component planes.

Figure 9: Contour lines of the u-matrix. It can be seen that codebook
vectors from the types Setosa and Versicolor lie in areas with smaller
distractions. This hints to a homogeneity of flowers of these species.

One way to visualize multiple component planes in the same image is the
composite bands operation. It creates a single raster set from multiple sets
with the same spatial extent. Thus it becomes possible to visualize three
component planes at the same time by using the RGB color spectrum
(Cowlishaw, 1985). The values of one plane are used as either red, green or
blue color components. The resulting colors are displayed. This operation
is especially apt to show differences between clusters, since different
values will result in different colors. The only drawback is that just three
component planes can be displayed at the same time. For the iris data set
with four dimensional data we needed four composite band combinations
in order to map every combination of planes.

The maximum likelihood classification is a statistical operation to
perform classifications for a set of raster sets that cover the same spatial
extent. It needs a signature file. One way to create such a file is the ISO
cluster operation. For this operation one can specify the number of desired
clusters and the raster sets on which to perform the analysis. The algorithm
arbitrarily chooses centers in multi-dimensional space and assigns the cell
values with the closest euclidean distance to exactly one of these centers.
After all cells have been assigned to one center, the mean of all cell values

for one cluster set is set as the new center. The user can specify the number
of times this cycle will be repeated. After the cycle has been finished, a
signature file is created which contains the mean values per raster band and
the covariance matrix for each class. The maximum likelihood
classification uses this signature file and the raster sets to create a new
raster set where each cell has a value that assigns it to exactly one cluster.

Figure 10: The composite band combinations of the four different
component planes. Top left: Combination of the planes 1,2 and 3. Top
right: Combination of the planes 1,2 and 4. Bottom left: Combination of
the planes 1,3 and 4. Bottom right: Combination of the planes 2,3 and 4.
Due to the similarity of the component planes 3 and 4 the two images on
the top look similar. Since the values of plane 3 are highly similar to the
ones of plane 4, they can be seen as representatives of the values of that
plane and vice versa. Therefore it can be argued that the top images show
best the value distribution of the SOM.

6 CONCLUSION

With this work we have shown ways to gain insight into the structure and
extension of a SOM by applying operations provided by a GIS on some of
its visualization types. We have explained the function and architecture of
a SOM and shown different ways to visualize its structure. We have
described how we import these visualization types into a GIS and we have
proposed several operations to display and thereby emphasize certain of its
properties or analyze SOM by statistic means. Since SOM are presented on
a two-dimensional display on which a further third variable is displayed,
they are well apt to be treated as spatial data. We have shown that it is

possible to treat the visualization types of a SOM as artificial landscapes
and that therefore spatial analysis can be applied to this originally non-
spatial data. The GIS-driven evaluation of SOM is therefore an
enhancement to traditional evaluation approaches.

Figure 11: The maximum likelihood classification for the iris flower data
set with three classes. Each species is assigned to its own class. Codebook
vectors representing Setosa flowers have to share their class with the
unlabeled vectors, however.

It must be stressed that the work of this paper is by no means completed.
The operations presented here form only a small part of the GIS repertoire.
We will continue looking for spatial operations that can deliver
information about the SOM. We also will work on making the relation
between the output of the spatial operations and its meaning for the SOM
input data more evident. One way to do this is to perform spatial
operations on the GIS results and provide links back to the input data. To
emphasize the usefulness of a GIS for gaining insight into the structure of
a SOM, it must be made more evident what the results mean for a distinct
input vector. We are convinced that when we have accomplished this, GIS
will stand out as one of the best ways to analyze SOM.

7 REFERENCES

Anderson, E. (1935). "The irises of the gaspe peninsula." Bulletin of the
American Iris Society, 59: 2-5.

Bação, F., V. Lobo, and M. Painho (2004). Geo-Self-Organizing Map
(Geo-SOM) for Building and Exploring Homogeneous Regions.
Geographic Information Science – Third International Conference GI-

Science 2004. M. Egenhofer, C. Freksa and H.J. Miller. Berlin, Springer.
3234.

Cowlishaw, M.F. (1985). "Fundamental requirements for picture
presentation." Proceedings Society for Information Display 26 (2):
101-107.

Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth (1996). "From data mining
to knowledge discovery in databases." Ai Magazine 17: 37-54.

Freiwald, N., Göbel, R., and Jany, R. (2005). Modellierung und Analyse
dreidimensionaler Geoobjekte mit GIS und CAD. B. Eitel, H. Gebhardt
and P. Meusburger. Heidelberg, Selbstverlag des Geographischen
Instituts der Universität Heidelberg.

Guo, D., M. Gahegan, et al. (2005). "Multivariate Analysis and
Geovisualization with an Integrated Geographic Knowledge Discovery
Approach." Cartography and Geographic Information Science 32(2):
113-132.

Hand D. (1998). Data mining: Statistics and more? The American
Statistician 52(2): 112-118.

Jin, H., W.-H. Shum, et al. (2004). "Expanding self-organizing map for
data visualization and cluster analysis." Information Sciences 163:
157-173.

Kaski, S. (1997). Data Exploration Using Self-Organizing Maps. Acta
Polytechnica Scandinavica, Mathematics, Computing and Management
in Engineering Series 82.

Kaski, S., Nikkilä, J., and Kohonen, T. (2000). Methods for exploratory
cluster analysis. Proceedings of SSGRR 2000, International Conference
on Advances in Infrastructure for Electronic Business, Science and
Education on the Internet. CD-ROM.

Kohonen, T. (2001). Self-Organizing Maps. T. Kohonen. Berlin, Springer.
Kohonen, T., Hynninen, J., et al. (1996). Som pak: The self-organizing map

program package. Report A31, Helsinki University of Technology.
Koua, E.L. and M.-J. Kraak (2004). "Geovisualization to support the

exploration of large health and demographic survey data." International
Journal of Health Geographics 3(1):12

Liebig, W. and R.D. Mummenthey (2005). ArcGIS-ArcView 9 Band 1:
ArcGIS-Grundlagen. Norden, Points Verlag.

Lippe, W. (2005). Soft-Computing. Berlin, Springer.
Painho, M., A. Vasilakos et al. (2005). "Exploring spatial data through

computational intelligence: a joint perspective." Soft Computing – A
Fusion of Foundations, Methodologies and Applications 9(5): 326-331.

Sammon, J.W. Jr., (1969). "A nonlinear mapping for data structure
analysis." IEEE Transactions on Computers C-18(5): 401-409.

Sommer, D. and M. Golz (2002). "Detection of wake-sleep transitions with

prototype vector-based neural networks." International Journal of
Knowledge-Based Intelligent Engineering Systems 6(3): 129-136.

Tufte, E. (1982). The Visual Display of Quantitative Information. E. Tufte.
Connecticut, Graphics Press.

Ultsch, A. (2003). Maps for the visualization of high-dimensional data
spaces. Proceedings Workshop on Self-Organizing Maps (WSOM
2003). T. Yamakawa. Kyushu Institute of Technology.

Ultsch, A. (2005). Density estimation and visualization for data containing
clusters of unknown structure. Classification; The Ubiquitous
Challenge, Proceedings 28th Annual Conference of the German
Classification Society (GfKl 2004). C. Weihs and W. Gaul. Berlin,
Springer.

Ultsch, A. (2007). Emergence in self organizing feature maps. Proceedings
of the 6th International Workshop on Self-Organizing Maps (WSOM
2007).

Vesanto, J. (1999). "Som-based data visualization methods." Intelligent
Data Analysis 3(2): 111-126.

Vesanto, J., Himberg, J., et al. (2000): Som Toolbox for Matlab. Technical
Report A57, Helsinki University of Technology.

Vesanto, J. and E. Alhoniemi (2000). "Clustering of the self-organizing
map." IEEE-NN 11(3): 586-600.

Voronoi, G. (1907). "Nouvelles applications des paramètres continus à la
théorie des formes quadratiques." Journal für die Reine und Angewandte
Mathematik 133: 97-178.

	1Introduction
	2Self-organizing maps
	3Visualization of the codebook vectors
	3.1Component planes
	3.2U-matrices
	3.3P-matrices

	4Conversion of the SOM
	5Visualizing SOM in ArcGIS
	5.1Analysis of landscape-like Visualization Types
	5.2Analysis of Component Planes

	6Conclusion
	7References

